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Abstract—A recurrent neural network (RNN) is acceler-
ated and applied to visual servo control of a physically-
constrained robotic flexible endoscope. The robotic endo-
scope consists of a patient side manipulator (PSM) of the
da Vinci Research Kit (dVRK) platform and a flexible endo-
scope working as an end-effector. To automate the robotic
endoscope, kinematic modeling for visual servoing is con-
ducted, leading to a quadratic programming (QP) con-
trol framework incorporating kinematic and physical con-
straints of the robotic endoscope. To solve the QP problem
and realize the vision-based control, an RNN accelerated
to finite-time convergence by a sign-bi-power activation
function (SBPAF) is proposed. The finite-time convergence
of the RNN is theoretically proved in the sense of Lyapunov,
showing that the SBPAF activated RNN exhibits a faster
convergence speed as compared with its predecessor. To
validate the efficacy of the RNN model and the control
framework, simulations are performed using a simulated
flexible endoscope in the robot operating system (ROS).
Physical experiment is then further performed to verify the
feasibility of the RNN model and the control framework.
Both simulation and experimental results demonstrate that
the proposed RNN solution is effective to achieve visual
servoing and handle physical limits of the robotic endo-
scope simultaneously.

Index Terms—Finite-time convergence, flexible endo-
scope, recurrent neural network, visual servo control.

I. INTRODUCTION

IN minimally invasive surgery, the endoscope plays a signif-
icant role in visualizing the operative site inside a patient’s

body [1], [2]. Operating the endoscope appropriately and
timely is crucial to secure the safety and efficiency of a
surgery. Conventionally, a human assistant is required to man-
ually adjust the endoscope during the surgical operations. The
endoscope assistant unavoidably suffers from hand tremors,
which leads to unstable camera views. The assistant may
misunderstand the surgeon’s intentions and then operate the
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endoscope inappropriately, which lowers the efficiency of the
surgery. To overcome the limitations incurred by a human
assistant, robotic endoscope holders such as the AESOP,
EndoAsist, ViKY and endoscopic camera manipulator of the
da Vinci surgical system have been developed [1], [2]. The
endoscope assistant can be replaced with a robotic endoscope,
allowing the surgeon to operate the robotic endoscope directly.
This alleviates hand tremors and inefficient communications
between the surgeon and the human assistant.

An endoscope camera is usually jointed with a rigid shaft.
The motions of the rigid shaft inserted into the surgical site
through a trocar must respect the constraints of the trocar [2],
[3]. As compared with a typical six-joint industrial robot, a
rigid endoscope robot suffers from a loss of two translation
degrees-of-freedom (DOFs). To obtain improved flexibility
and dexterity, flexible endoscopes have been physically im-
plemented [4]–[11]. For instance, a semi-automatic flexible
endoscope driven by two cables was designed in [6], where the
endoscope equipped with sensors has capabilities to achieve
collision avoidance. The flexible continuum robot designed in
[7] has potentials to improve a spring backbone endoscope
presented in [8] due to the enhanced flexibility by its redun-
dancy. Flexible endoscopes were experimentally demonstrated
to offer enhanced safety [5] and wider vision scope [9] as
compared with rigid endoscopes. Hence, it is meaningful to
investigate flexible endoscopes for surgical applications.

Traditionally, interactions between the surgeon and the
robotic endoscope are achieved by manual manipulation or
teleoperation. Although these robotic endoscopes allow a
surgeon to perform a solo surgery, the operation of the
endoscope imposes extra burdens on the surgeon. To further
relieve the surgeon’s workload, automation technologies have
been introduced to robotic endoscopes. A common way to
automate a robotic endoscope is to form a control system
using the visual information retrieved from the endoscope
camera, considering that vision is a naturally integrated sensor
of an endoscope [2]–[5]. For example, a flexible endoscope
was robotized to automatically track an anatomical target of
interest in [4], freeing the surgeon of the task for stabilizing
the anatomical target on the image plane. In [5], the patient
side manipulator (PSM) of the da Vinci Research Kit (dVRK)
platform equipped with a flexible endoscope was endowed
with autonomy by using visual servo control.

One common drawback of the visual servo control frame-
works presented in [3]–[5] is that joint limits such as the
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joint-displacement and joint-velocity constraints have not been
well considered. Unfortunately, joint limits generally exist in
a physical robot. Violating joint limits during a task execution
process may lead to task failure and even damage the robot.
Quadratic programming (QP) based control frameworks have
been demonstrated to be powerful alternatives for controlling
physically-constrained robots [12]–[15]. Due to the parallel-
processing nature and physical implementability, recurrent
neural networks (RNNs) have been proposed and implemented
as powerful QP solvers [12]–[20]. For instance, in [12],
[13], dual neural networks, primal-dual neural networks and
numerical algorithms were developed and compared for repet-
itive motion planning and obstacle avoidance of redundant
robots under joint constraints. Following a unifiable procedure,
RNNs were designed for kinematic control and manipulability
maximization of physically-constrained redundant robots in
[14]–[16]. An RNN model was demonstrated to be capable
of improving control precision and motion adaptiveness of
a surgical robot in [17]. Although joint limits were well
handled, visual servoing techniques have not applied to the
robots to achieve autonomy in these works. In [18], an RNN
model was proposed for visual servoing of an industrial robot
with joint limits involved. The above neural networks possess
global convergence, which may require infinitely long time
to be convergent. For some applications, a faster convergence
speed such as finite-time convergence is more preferable. In
[19], [20], zeroing neural networks (ZNNs) with accelerated
convergence (e.g., finite-time convergence) were applied to
kinematic control of redundant robots. However, ZNNs require
derivative information of relevant coefficients and it tends to
be more complicated and tricky to handle joint limits using
ZNNs. Dual neural networks with finite-time convergence
were studied in [21], [22], where complex operations such as
matrix inversion were involved in the neural networks. Apart
from RNNs, other machine learning techniques including feed-
forward neural networks and deep reinforcement learning have
been developed for redundant robots [23]–[25]. These model-
free strategies require a training process and could be promis-
ing methods for achieving intelligence, whereas most of the
RNN solvers for quadratic programming are model-based and
training-free. This work seeks a model-based, inverse-free and
training-free RNN solution to ensure finite-time convergence
and joint-limit avoidance.

In this paper, kinematics analysis and a QP based control
scheme are first presented to achieve visual servoing of a
physically-constrained flexible endoscope coupled with a PSM
of the dVRK platform. An inverse-free RNN model working as
a QP solver is then designed and accelerated to deliver finite-
time convergence by using a sign-bi-power activation func-
tion (SBPAF). Based on the Lyapunov theory, the finite-time
convergence of the accelerated RNN model is mathematically
proved, showing that the enhanced RNN model outperforms its
predecessor in terms of the convergence speed. To verify the
effectiveness of the RNN and the established control frame-
work, computer simulations are performed using a simulated
robotic flexible endoscope constructed in the Gazebo simulator
and the robot operating system (ROS). The experimentation of
the visual servo control framework is finally implemented on

a physical robotic flexible endoscope to validate the feasibility
of the RNN and the control framework. Simulation and
experimental results show that the finite-time convergent RNN
model is competent to achieve visual servoing of the robotic
flexible endoscope under joint constraints.

The remainder of this paper is organized as follows. In
Section II, the robotic flexible endoscope and the kinematics
analysis results are introduced. Section III details and analyzes
a QP based control scheme and an accelerated RNN for visual
servoing of the robotic endoscope. In Sections IV and V,
computer simulations and physical experiment are conducted
to substantiate the effectiveness of the RNN model and the
control scheme. Conclusive remarks are given in Section VI.
The main contributions of this paper are listed as follows.

1) The SBPAF is employed to enable an inverse-free RNN
to be finite-time convergent. This is the first time to
accelerate the RNN model in the literature.

2) Theoretical analysis is conducted with the superiority
and finite-time convergence of the accelerated RNN
model rigorously proved.

3) Simulation and experimentation of the RNN model are
investigated with attractive results substantiating that
the proposed control framework is capable of achieving
visual servoing of the robotic flexible endoscope with
joint limits handled.

Notation: In this paper, symbols Rn and Rm×n represent the
spaces of n dimensional vectors and m× n dimensional ma-
trices, respectively. Symbol T denotes the transpose operator
of a vector or matrix. Symbol ‖ · ‖r stands for the r-norm
of a vector. Symbols λmin(·) and λmax(·) indicate the smallest
and largest eigenvalues of a matrix, respectively. Symbol ◦
denotes the Hadamard product for element-wise multiplication
of vectors or matrices.

II. KINEMATIC MODELING OF THE ENDOSCOPE ROBOT

The robotic flexible endoscope shown in Fig. 1 possesses six
DOFs. Four of the six DOFs are offered by the dVRK robot,
while the rest of the two DOFs are provided by the continuum
flexible arm. The kinematic modeling of the robotic flexible
endoscope involves three kinematic mappings.

A. Mapping of Task and Configuration Spaces
Based on the attached coordinate frames shown in Fig. 1(b),

it is easy to determine the first five transformation matrices
i−1Hi ∈ R4×4 with i = 1, 2, · · · , 5. According to [4], [5],
the transformation matrix related to the flexible joint is

5H6 =


s2
φ + c2φcθ cφsφ(cθ − 1) cφsθ

Lcφ(1−cθ)
θ

cφsφ(cθ − 1) c2φ + cθs
2
φ sφSθ

Lsφ(1−cθ)
θ

−cφsθ −sφsθ cθ
Lsθ
θ

0 0 0 1

 ,
where sφ := sin(φ), cφ := cos(φ), sθ := sin(θ), cθ := cos(θ),
and parameters φ, θ and L represent the bending direction,
bending angle and length of the flexible joint, respectively.
The final transformation matrix between the end point of
the flexible segment and the camera is 6H7. In light of the
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Fig. 1. A robotic flexible endoscope coupled with a PSM of the dVRK
platform. (a) Robotic flexible endoscope. (b) Coordinate frames.

resultant transformation matrices, it is readily to link the pose
of the camera and the joint variables:[

0R7
0p7

0 1

]
=

7∏
i=1

i−1Hi ∈ R4×4 (1)

and naturally the velocity-level kinematic equation is

0χ̇ = J tq̇, (2)

where 0R7 ∈ R3×3 and 0p7 ∈ R3 are the rotation matrix and
position vector of the camera with respect to the world frame;
0χ̇ = [0v

T
c ,

0w
T
c ]T ∈ R6 is the linear and angular velocities of

the camera in the world frame. Matrix J t ∈ R6×6 and vector
q̇ = [ϑ̇1, ϑ̇2, ϑ̇3, ϑ̇4, φ̇, θ̇]

T ∈ R6 represent the task Jacobian
and the joint-velocity vector, respectively.

B. Mapping of Configuration Space and Image Space

For visual servo control, assume a point P (x, y, z) in the
camera frame is projected to a point s = [u, v]T ∈ R2 on the
image plane. The velocity of point ṡ = [u̇, v̇]T on the image
plane and the instantaneous linear and angular velocities of
the camera 7χ̇ = [7v

T
c ,

7w
T
c ]T are connected by the following

kinematic equation [26]:

ṡ = J image
7χ̇, (3)

where the image Jacobian matrix J image ∈ R2×6 is

J image =

[
− f̄z 0 ū

z
ūv̄
f̄

− f̄2+ū2

f̄
v̄

0 − f̄z v̄
z

f̄2+v̄2

f̄
− ūv̄

f̄
−ū

]
(4)

with ū = u−u0, v̄ = v−v0 and f̄ = f/ρ. Here, s0 = [u0, v0]T

is the principal point on the image plane, f and ρ are the focal
length of the camera and the pixel width of each square pixel
of an image. Depth z can be assumed constant due to the
inherent error tolerance of visual servoing [26].

Note that 7χ̇ and 0χ̇ are depicted in terms of different
coordinate frames. Combining kinematic equations (2) and (3),
a final kinematic equation is obtained as

ṡ = J̄ q̇, (5)

where J̄ := J imageJ camera ∈ R2×6 with the camera Jacobian

J camera =

[
0R7 0
0 0R7

]T

J t ∈ R6×6. (6)

C. Mapping of Configuration and Actuation Spaces

The two DOFs associated with the bending direction and
bending angle of the flexible joint are driven by four cables.
According to [4], [5], [9], the velocity-level kinematic equation
is compactly written as[

l̇1
l̇2

]
= r1J actuator

[
φ̇

θ̇

]
with J actuator =

[
θsφ −cφ
−θcφ −sφ

]
, (7)

where r1 is the radius of the circularly distributed chambers
and l̇i denotes the velocity of the ith cable with l̇1+ l̇3 = 0 and
l̇2 + l̇4 = 0 satisfied. Considering that the cables are operated
by two pulley wheels, it further yields[

ϑ̇5

ϑ̇6

]
=
r1

r2
J actuator

[
φ̇

θ̇

]
, (8)

where ϑ̇5, ϑ̇6 and r2 denote the rotary velocities and the radius
of the two pulley wheels with l̇1 = r2ϑ̇5 and l̇2 = r2ϑ̇6. Kine-
matic equations (5) and (8) indicate that variables depicting
the motions of the flexible joint can be φ̇ and θ̇ or ϑ̇5 and ϑ̇6.
Computing φ̇ and θ̇ from ϑ̇5 and ϑ̇6 requires the inverse of
matrix J actuator ∈ R2×2. Since matrix J actuator is singular when
θ = 0 rad, φ̇ and θ̇ are chosen as the flexible joint’s variables
in this paper. In this way, kinematic equation (8) allows one
to determine ϑ̇5, ϑ̇6 from the resolved variables φ̇ and θ̇ for
actuating the physical flexible endoscope.

III. VISUAL SERVO CONTROLLER OF THE ROBOTIC
FLEXIBLE ENDOSCOPE

This section details the mathematical derivations of a QP
based visual servo control scheme and a finite-time convergent
RNN controller. Then, the finite-time convergence of the RNN
controller is theoretically analyzed.
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A. Scheme Formulation and RNN Controller
When controlling the dVRK based flexible endoscope, kine-

matic constraints depicted in (5) must be satisfied. Meanwhile,
the resolved joint variables should be bounded by their joint
limits. To let the PSM occupy less space when performing
a task, the motions of the PSM can be constrained while
the movements of the flexible joint can be increased [5].
The following QP based minimum weighted velocity norm
(MWVN) scheme meets the above discussed requirements:

minimize: q̇TAq̇/2, (9)
subject to: J̄ q̇ = ṡ, (10)

q− 6 q 6 q+, (11)

q̇− 6 q̇ 6 q̇+, (12)

where matrix A = W TW = diag(w2
1, w

2
2, · · · , w2

6) ∈ R6×6

with W := diag(w1, w2, · · · , w6) and wi > 0 for i =
1, 2, · · · , 6 are used to achieve weighted motions of the robotic
endoscope. In addition, q− ∈ R6 and q+ ∈ R6 (q̇− ∈ R6

and q̇+ ∈ R6) respectively denote the lower and upper
limits of joint-displacement vector q (joint-velocity vector q̇).
MWVN scheme (9)–(12) reduces to the minimum velocity
norm (MVN) scheme when A = I is an identity matrix.

Equivalently, QP problem (9)–(12) can be formulated as

minimize: ẋTẋ/2, (13)

subject to: Ĵ ẋ = ṡ, (14)
x− 6 x 6 x+, (15)

ẋ− 6 ẋ 6 ẋ+, (16)

where x := Wq ∈ R6, ẋ := Wq̇ ∈ R6, Ĵ := J̄M ∈ R2×6

with M := W−1 = diag(1/w1, 1/w2, · · · , 1/w6) ∈ R6×6,
x− := Wq− ∈ R6, x+ := Wq+ ∈ R6, ẋ− := Wq̇− ∈ R6

and ẋ+ := Wq̇+ ∈ R6.
The bound constraints (15) and (16) can be unified as a

single bound constraint: ξ− 6 ẋ 6 ξ+ with{
ξ− := max{η(x− − x), ẋ−},
ξ+ := min{η(x+ − x), ẋ+}, (17)

where parameter η > 0 is a constant [12], [13]. Then, QP
problem (13)–(16) is consequently rewritten as

minimize: ẋTẋ/2, (18)

subject to: Ĵ ẋ = ṡ, (19)

ξ− 6 ẋ 6 ξ+. (20)

According to the KKT conditions of QP (18)–(20), the fol-
lowing equations hold true [18], [27]:

ẋ+ Ĵ
T
λ+ µ = 0,

Ĵ ẋ = ṡ,

ẋ = P(ẋ+ µ),

(21)

where λ ∈ R2 and µ ∈ R6 are the Lagragian multipliers, and
the projector operator

P(zi) =


ξ+
i , if zi > ξ+

i ,

zi, if ξ−i 6 zi 6 ξ+
i ,

ξ−i , if zi < ξ−i ,

(22)

is defined for each scalar element zi of a given vector
z ∈ Rn with i = 1, 2, · · · , n. It follows from the above KKT
conditions that

ĴP(−ĴT
λ) = ṡ, (23)

since µ = −ĴT
λ− ẋ, ẋ = P(−ĴT

λ) and Ĵ ẋ = ṡ.
Naturally, an RNN model is obtained for solving QP prob-

lem (18)–(20): state equation: λ̇ = γ
(
ĴP(−ĴT

λ)− ṡ
)
,

output equation: ẋ = P(−ĴT
λ),

(24)

(25)

where parameter γ > 0 is a scaling factor relevant to the
convergence performance. RNN model (24) is exactly the orig-
inally proposed QP solver presented in [27], where the global
convergence of the neural network has been investigated. As
proved in [27], the output of the RNN converges to the optimal
solution of the QP problem (18)–(20) as time t→ +∞.

Note that RNN model (24) was proposed for MVN scheme.
For controlling the robotic endoscope using the MWVN
scheme, the following modified and generalized RNN model
is proposed as one of the contributions in this paper: state equation: λ̇ = γF

(
ĴP(−ĴT

λ)− ṡ
)
,

output equation: q̇ = MP(−ĴT
λ),

(26)

(27)

where F(·) is a mapping array consisting of activation func-
tions f(·). Evidently, the generalized neural network (26)
reduces to the original RNN model (24) if linear activation
function (LAF) f(x) = x is used. With the global convergence
property, the original RNN model (24) may require infinitely
long time to be convergent. This may fail to obtain timely
convergence in some practical applications. To accelerate and
enable the RNN model to be convergent in finite time, the
following SBPAF is applied to the neural network:

f(x) = x+ |x|rsign(x) + |x| 1r sign(x), (28)

where parameter r ∈ (0, 1). Sign function sign(x) = x/|x|
when x 6= 0 and sign(x) = 0 when x = 0.

B. Convergence Analysis of the RNN Controller

Let us consider the following dynamical system:

ẋ(t) = f(x(t), t), t ∈ [0,+∞), (29)

where x(t) ∈ Rn denotes the system state having an initial
state x(0) = x0. Besides, ẋ(t) is the time derivative of x(t)
and the origin x(t) = 0 is supposed as an equilibrium point
of system (29).

Definition 1 ( [28]): The origin of system (29) is glob-
ally asymptotically stable, if every trajectory of system state
x(t,x0)→ 0 when time t→ +∞.

Definition 2 ( [29]): The origin of system (29) is globally
finite-time stable if it is globally asymptotically stable and
there exists a locally bounded settling-time function T : Rn →
R+ ∪ {0}, such that x(t,x0) = 0 for all t > T (x0).
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Definition 3 ( [30]): Given a column vector x =
[x1, x2, · · · , xn]T ∈ Rn and a positive parameter r ∈ R+. The
r-norm of vector x is defined as ‖x‖r := (

∑n
i=1 |xi|r|)

1
r .

Lemma 1 ( [30]): Given a column vector x =
[x1, x2, · · · , xn]T ∈ Rn and two positive parameters a ∈ R+

and b ∈ R+. If b 6 a, then ‖x‖a 6 ‖x‖b holds true.
Based on the above preliminaries, the faster convergence

of the SBPAF activated RNN model (26) is first proved in
comparison with the original RNN model (24). Then, the
finite-time convergence property of the SBPAF activated RNN
model (26) is theoretically analyzed.

Theorem 1: Given a QP problem (18)–(20), if SBPAF (28)
is employed to activate RNN model (26), then neural state
λ of RNN model (26), converges to an equilibrium point λ∗

faster as compared with RNN model (24).
Proof: Let us introduce a vector y := ĴP(−ĴT

λ)− ṡ ∈
R2 and define a Lyapunov candidate function for RNN model
(26) as

V =
1

2
‖y‖22. (30)

By taking the time derivative, it yields

D+V = yTẏ = −yTĴD+
(
P(−ĴT

λ)
)
Ĵ

T
λ̇

= −γyTĴD+
(
P(−ĴT

λ)
)
Ĵ

TF(y)

= −γyTHF(y), (31)

where D+V is the upper right Dini derivative of Lyapunov
candidate function V , matrix H := ĴD+

(
P(−ĴT

λ)
)
Ĵ

T ∈
R2×2 and matrix D+

(
P(−ĴT

λ)
)
∈ R6×6 denotes the up-

per right Dini derivative of P(−ĴT
λ). If an auxiliary vari-

able z = −ĴT
λ ∈ R6 is defined, then D+

(
P(z)

)
:=

diag
(
D+
(
P(z1)

)
, D+

(
P(z2)

)
, · · · , D+

(
P(z6)

))
is a diago-

nal matrix of which the diagonal elements are

D+
(
P(zi)

)
=

{
1, if ξ−i 6 zi < ξ+

i ,

0, if zi < ξ−i or zi > ξ+
i ,

(32)

for i = 1, 2, · · · , 6. When the LAF is used, it yields

D+V = −γyTHy = −γŷTD+
(
P(−ĴT

λ)
)
ŷ 6 0 (33)

with ŷ = Ĵ
T
y ∈ R6, since diagonal matrix D+

(
P(−ĴT

λ)
)

is positive semi-definite. This means that RNN model (24) is
globally convergent.

When SBPAF (28) is used, it leads to

D+V = −γyTHF(y)

= −γyTH
(
y + |y|r ◦ sign(y) + |y| 1r ◦ sign(y)

)
= −γỹT(y + |y|r ◦ sign(y) + |y| 1r ◦ sign(y)

)
= −γỹTy − γỹT(|y|r ◦ sign(y))− γỹT(|y| 1r ◦ sign(y))

(34)

with ỹ := HTy and symbol ◦ denoting the Hadamard product.
It follows (33) that the following inequality holds true:

yTHy = ỹTy =
2∑
i=1

ỹiyi > 0. (35)

Hence, the following two inequalities are readily satisfied:

ỹT(|y|r ◦ sign(y)) =
2∑
i=1

ỹi|yi|rsign(yi) =
2∑
i=1

ỹiyi|yi|r−1

> min
i∈{1,2}

{|yi|r−1}
2∑
i=1

ỹiyi > 0, (36)

and similarly,

ỹT(|y| 1r ◦ sign(y)) > min
i∈{1,2}

{|yi|
1
r−1}

2∑
i=1

ỹiyi > 0. (37)

This means that the time derivative of Lyapunov candidate
function V , i.e., D+V shown in (34) exhibits three negative
terms, i.e., −γyTHy 6 0, −γyTH(|y|r ◦ sign(y)) 6 0 and
−γyTH(|y| 1r ◦sign(y)) 6 0. By contrast, D+V shown in (33)
delivers only one negative term −γyTHy 6 0 in the LAF
case. Since −γyTH

(
y + |y|r ◦ sign(y) + |y| 1r ◦ sign(y)

)
6

−γyTHy 6 0, D+V in the SBPAF case becomes more
negative in comparison with the LAF case, meaning that
Lyapunov candidate function V converges to 0 faster in the
SBPAF case. Hence, the SBPAF activated RNN model (26)
can deliver an accelerated convergence speed as compared
with RNN model (24). This completes the proof.

Theorem 2: Given a QP problem (18)–(20), if SBPAF (28)
is employed to activate RNN model (26), then neural state λ
of RNN model (26), converges to an equilibrium point λ∗ in
finite time.

Proof: Let us define a vector y := ĴP(−ĴT
λ)− ṡ ∈ R2.

The following Lyapunov candidate function for RNN model
(26) is defined:

V =
1

2
‖y‖22 +

1

r + 1
‖y‖r+1

r+1 +
r

r + 1
‖y‖

r+1
r
r+1
r

. (38)

By taking the time derivative, it is readily to have

D+V = yTẏ +
(
|y|r ◦ sign(y)

)T
ẏ +

(
|y| 1r ◦ sign(y)

)T
ẏ

=
(
y + |y|r ◦ sign(y) + |y| 1r ◦ sign(y)

)T
ẏ

= −FT(y)ĴD+
(
P(−ĴT

λ)
)
Ĵ

T
λ̇

= −γFT(y)HF(y) 6 −γλmin(H)FT(y)F(y)

= −γλmin(H)‖y + |y|rsign(y) + |y| 1r sign(y)‖22
6 −γλmin(H)

(
‖y‖22 + ‖y‖2r2r + ‖y‖

2
r
2
r

)
, (39)

where λmin(H) denotes the smallest eigenvalue of matrix
H := ĴD+

(
P(−ĴT

λ)
)
Ĵ

T ∈ R2×2 and D+
(
P(−ĴT

λ)
)
∈

R6×6 is the Dini derivative of P(−ĴT
λ), which is the same

as that defined in Theorem 1.
By noting that 2r/(r + 1) ∈ (0, 1), It follows (38) that

V 2r
r+1 =

(1

2
‖y‖22 +

1

r + 1
‖y‖r+1

r+1 +
r

r + 1
‖y‖

r+1
r
r+1
r

) 2r
r+1

6
(1

2

) 2r
r+1 ‖y‖2×

2r
r+1

2 +
( 1

r + 1

) 2r
r+1 ‖y‖2rr+1

+
( r

r + 1

) 2r
r+1 ‖y‖2r+1

r

. (40)
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According to Definition 3 and Lemma 1, ‖y‖2rr+1 6 ‖y‖2r2r
and ‖y‖2r+1

r

6 ‖y‖22 hold true since 2r < r + 1. Meanwhile,

‖y‖2×
2r
r+1

2 6

{
‖y‖2r2 6 ‖y‖2r2r, if ‖y‖22 6 1,

‖y‖22, if ‖y‖22 > 1,
(41)

in view of r < 2r/(r+ 1) < 1. Hence, ‖y‖2×
2r
r+1

2 6 ‖y‖2r2r +
‖y‖22 and thus

V 2r
r+1 6

((1

2

) 2r
r+1

+
( r

r + 1

) 2r
r+1
)
‖y‖22

+
((1

2

) 2r
r+1

+
( 1

r + 1

) 2r
r+1
)
‖y‖2r2r. (42)

Taking into account (38) again yields

‖y‖r+1
r+1 = |y1|r+1 + |y2|r+1 = |y1|r|y1|+ |y2|r|y2|

6
1

2

2∑
i=1

(|yi|2r + |yi|2) =
1

2
(‖y‖2r2r + ‖y‖22) (43)

and

‖y‖
r+1
r
r+1
r

= |y1|
1
r+1 + |y2|

1
r+1 6

1

2
(‖y‖

2
r
2
r

+ ‖y‖22). (44)

Hence, the following inequality holds true:

V 6 ‖y‖22 +
1

2(r + 1)
‖y‖2r2r +

r

2(r + 1)
‖y‖

2
r
2
r

. (45)

Consequently,

V 2r
r+1 + V 6

((1

2

) 2r
r+1

+
( 1

r + 1

) 2r
r+1

+
1

2(r + 1)

)
‖y‖2r2r

+
((1

2

) 2r
r+1

+
( r

r + 1

) 2r
r+1

+ 1
)
‖y‖22 +

r

2(r + 1)
‖y‖

2
r
2
r

= %1‖y‖2r2r + %2‖y‖22 + %3‖y‖
2
r
2
r

6 %max

(
‖y‖22 + ‖y‖2r2r + ‖y‖

2
r
2
r

)
, (46)

where

%1 :=
(1

2

) 2r
r+1

+
( 1

r + 1

) 2r
r+1

+
1

2(r + 1)
, (47)

%2 :=
(1

2

) 2r
r+1

+
( r

r + 1

) 2r
r+1

+ 1, %3 :=
r

2(r + 1)
, (48)

and %max := max{%1, %2, %3}. Then, it follows (39) that

D+V 6 −γλmin(H)

%max

(
V 2r
r+1 + V

)
. (49)

Hence, RNN (26) converges in finite time [21], [22], [31]:

tc =
%max(r + 1)

γλmin(H)(1− r) ln
(
V

1−r
r+1

0 + 1
)
, (50)

where V0 := V(0) is the initial value of Lyapunov candidate
function V . This completes the proof.

Theorem 3: Let λ∗ ∈ R2 be an equilibrium point of
RNN model (26). Then, the corresponding neural output
q̇∗ = MP(−ĴT

λ∗) ∈ R6 is the optimal solution to the QP
based visual servo control problem (9)–(12).

Proof: Since λ∗ is an equilibrium point of RNN model
(26) and q̇∗ = MP(−ĴT

λ∗) is the neural output, the
following equations hold true:{

ĴP(−ĴT
λ∗) = ṡ,

q̇∗ = MP(−ĴT
λ∗).

(51)

Define two auxiliary vectors ẋ∗ := Wq̇∗ = P(−ĴT
λ∗) ∈ R6

and µ∗ := −ĴT
λ∗ − P(−ĴT

λ∗) ∈ R6, where matrix
W := M−1. Then vector [(ẋ∗)T, (λ̇

∗
)T, (µ̇∗)T]T satisfies the

equations shown in (21) which is an equivalent form of the
KKT conditions of QP problem (18)–(20). Since the KKT
conditions are sufficient and necessary to ensure an optimal
solution of QP problem (18)–(20), ẋ∗ is the optimal solution
to QP problem (18)–(20). Due to the equivalence of QP
problems depicted in (18)–(20) and (9)–(12), q̇∗ = Mẋ∗ =

MP(−ĴT
λ∗) is the optimal solution to the QP based visual

servo control problem (9)–(12). This completes the proof.

IV. SIMULATION VALIDATION

To verify the efficacy of the proposed finite-time convergent
RNN model (26) for visual servoing of the robotic endoscope,
a simulated robotic endoscope is established in Gazebo with
the RNN algorithm implemented in ROS. Specifically, a
discrete form of RNN solver (26) is constructed. Given a task
with a numerical time duration of tmax, a sampling gap τ is
used to discretize the QP (18)–(20). In each time step tk = kτ
for k = 0, 1, · · · , tmax/τ , the kth QP is treated as constant. To
solve the kth QP, the neural state λ in the kth time step (i.e.,
λk) is updated using the following algorithm:

λik = λi−1
k + hγF

(
ĴkP(−ĴT

kλ
i−1
k )− ṡk

)
, (52)

which iterates using step size h and iteration number i =
1, 2, · · · , imax with imax = 5000 until the solution error ε :=

‖ĴP(−ĴT
λ)− ṡ‖2 < 1× 10−3 or iteration number i reaches

imax. Joint-angle vector q is then updated by considering (27)
and Euler’s method q̇k := (qk+1 − qk)/τ :

qk+1 = qk + τMkP(−ĴT
kλk). (53)

The roles of the weighting matrix A and activation func-
tions are studied with parameters tmax = γ = 5.0,
h = τ = 0.01, r = 0.5, η = 6, q− =
[−π/3 rad,−π/4 rad, 0.08 m,−π rad,−103π rad,−π/2 rad]T,
q+ = [π/3 rad, π/4 rad, 0.15 m, π rad, 103π rad, π/2 rad]T,
q̇+ = [2 rad/s, 2 rad/s, 0.4 m/s, 6 rad/s, 6 rad/s, 6 rad/s]T,
and q̇− = −q̇+. Simulation results are recorded using ROS
bag files. Due to the iterative computations, the recorded
ROS time duration would be different from the numerical
time duration. The control step time is not strictly fixed
and it involves the computing time and the computer-robot
interaction time, indicating that the control step time could be
larger or smaller than the numerical time step τ .
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Fig. 2. Visual servo control of the flexible endoscope based on RNN model (26) activated by SBPAF (28) and MVN scheme (9)–(12). (a) Initial state.
(b) Final state. (c) Pixel trajectory. (d) Pixel errors. (e) Resolved joint displacements. (f) Resolved joint velocities.

A. Role of Weighting Matrix A
Since the performance index in (9) aims to minimize the

weighted norm of the joint velocities, weighting matrix A
plays a role in constraining or increasing motions of some
joints of the robotic flexible endoscope. When A := I is
an identity matrix, QP formulation (9)–(12) reduces to an
MVN scheme. Simulation results synthesized by the MVN
scheme are shown in Fig. 2. As seen from Fig. 2(a)–(d), the
flexible endoscope, starting from the initial state shown in Fig.
2(a), finally places the target of interest in the center of the
camera view after around 20 s in ROS. The resolved joint
displacements and velocities illustrated in Fig. 2(e) and (f) are
all bounded by their limits. In particular, joint displacement ϑ3

reaches but does not exceed its lower limit ϑ−3 = 0.08 m. This
verifies the effectiveness of RNN model (26) for joint limit
avoidance. The MVN scheme results in large joint motions of
the PSM as can be observed in Fig. 2(b), (e) and (f).

The MWVN scheme (9)–(12) is capable of achieving
weighted joint motions of the robotic endoscope. By constrain-
ing the movements of the PSM and making the flexible seg-
ment more active, the robotic endoscope is enabled to benefit
from the dexterity of its flexible joint. To demonstrate this
point, weighting matrix A := diag{500, 500, 100, 500, 1, 1}
is adopted in MWVN scheme (9)–(12). Corresponding results
are shown in Fig. 3. Starting from the same initial state shown
in Fig. 2(a), the flexible endoscope bends to track the target.
As seen from Fig. 3(a) and (b), the target is successfully
placed at the center of the camera view. The resolved joint
displacements and velocities illustrated in Fig. 3(c) and (d)
show that the motions of the PSM are restricted and the visual
task is accomplished by larger motions of the flexible joint as
compared with the MVN scheme.

B. Role of Activation Functions

For verifying the superiority of the SBPAF (28), LAF is
also applied to activate RNN model (26) to finish the same
task. Comparative results are shown in Fig. 3(e) and (f). As
shown in these figures, the MVN scheme and the MWVN
scheme with LAF used perform more iterations at some time
steps during the task execution process, as compared with
the MWVN scheme with SBPAF employed. For the first 100
time steps, 0.012 s and 0.006 s are averagely consumed by
the LAF and SBPAF cases of the MWVN scheme in each
time step, respectively. This leads to a fact that the visual task
can be achieved faster by using the SBPAF activated RNN
model as presented in Fig. 3(f). After a shorter time of 4 s,
the robotic flexible endoscope places the object at the central
area of the camera view when MWVN scheme (9)–(12) is
utilized. By comparing with the MVN scheme (see Fig. 2),
it can conclude that the relatively active role of the flexible
joint can be beneficial to speeding up the tracking process and
reducing the occupied space of the PSM robot. The superior
convergence of the SBPAF activated RNN is thus validated.

C. Comparison with Pseudo-inverse Based Method

One classic pseudo-inverse based solution for robot control
is the gradient-projection method [32], [33]:

ẋ = Ĵ
T
Qṡ+

(
I − ĴT

QĴ
) n∑
i=1

κi∇ψi, (54)

where Q := (Ĵ Ĵ
T
+δ2I)−1 with δ denoting a damping factor;

κi is a scalar gain; ψi is a scalar-valued optimization index
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Fig. 3. Visual servo control of the flexible endoscope based on SBPAF (28) and LAF activated RNN model (26) and MVN/MWVN scheme (9)–(12).
(a) Final state of the MWVN scheme with SBPAF used. (b) Pixel trajectory of the MWVN scheme with SBPAF used. (c) Resolved joint displacements
of the MWVN scheme with SBPAF used. (d) Resolved joint velocities of the MWVN scheme with SBPAF used. (e) Iterations of the MVN and MWVN
schemes. (f) Pixel errors of the MWVN scheme with SBPAF and LAF used.
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Fig. 4. Visual servo control of the flexible endoscope using pseudo-inverse based scheme (55) with A := diag{500, 500, 100, 500, 1, 1}, κ1 =
1× 10−3 and κ2 = 1× 10−5. (a) Pixel errors. (b) Resolved joint displacements. (c) Resolved joint velocities.
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Fig. 5. Resolved joint velocity φ̇ synthesized by visual servoing of the
flexible endoscope using pseudo-inverse based scheme (55) with A :=
diag{500, 500, 100, 500, 1, 1}, κ1 = 1× 10−3 and different values of κ2.

and ∇ denotes the gradient operator. Considering ẋ := Wq̇

and M := W−1, it yields

q̇ = MĴ
T
Qṡ+M

(
I − ĴT

QĴ
) n∑
i=1

κi∇ψi. (55)

Control law (55) is the weighted gradient-projection solution
presented in [32], [33] by noticing that Ĵ := J̄M . In [33],
[34], two performance indices were defined as

ψ1 =
6∑
i=1

(q+
i − q−i )2

4(q+
i − qi)(qi − q−i )

, (56)

ψ2 =
6∑
i=1

(q̇+
i − q̇−i )2

4(q̇+
i − q̇i)(q̇i − q̇−i )

, (57)

for avoiding joint-angle and joint-velocity limits, where
∇ψ1 = [∂ψ1/∂q1, ∂ψ1/∂q2, · · · , ∂ψ1/∂q6]T and ∇ψ2 =
[∂ψ2/∂q̇1, ∂ψ2/∂q̇2, · · · , ∂ψ2/∂q̇6]T.
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Fig. 6. Visual servo control of the physical flexible endoscope based on SBPAF (28) activated RNN model (26) and MWVN scheme (9)–(12) with
A := diag{500, 500, 100, 500, 1, 1} employed. (a) Initial state with labels. (b)–(f) Snapshots during the visual task.
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Fig. 7. Experimental results corresponding to the visual servo control of the physical flexible endoscope. (a) Pixel errors. (b) Joint displacements
ϑ1 and ϑ2. (c) Joint displacement ϑ3. (d) Joint displacements ϑ4, ϑ5 and ϑ6.

To demonstrate the superiority of the proposed QP based
MWVN scheme (9)–(12), the pseudo-inverse based control
scheme (55) with performance indices (56) and (57) is applied
to visual servoing of the flexible endoscope. The case with
weighting matrix A := diag{500, 500, 100, 500, 1, 1} is com-
paratively investigated. Corresponding results are presented in
Figs. 4. The initial state of the robotic flexible endoscope
is set as the same as shown in Fig. 2(a). The final state

of the robotic endoscope is similar to the one presented in
Fig. 3(a) and thus it is omitted due to space limitation. As
seen from Fig. 4(a), the pixel errors vanish to be 0, meaning
that the detectable object is finally located at the central area
of the image plane by adjusting the endoscope automatically
using pseudo-inverse based scheme (55). The resolved joint
displacements presented in Fig. 4(b) are all within their limits.
In particular, joint displacement ϑ3 approaches its lower limit
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ϑ−3 in the first few time steps. When the joint displacement ϑ3

is close to its lower limit, performance index (56) takes effect
to enable the joint to move away from its lower limit. However,
the resolved joint velocity φ̇ shown in Fig. 4(c) violates its
lower limit, which is undesirable. Since the parameter κ2

is claimed to be relevant to joint-velocity avoidance, cases
with different values of κ2 have been studied. Fig. 5 presents
the resolved joint velocity φ̇, showing that the joint limit
violation phenomenon cannot be eliminated. Note that a too
large value of κ2 (e.g., 0.1) would lead to unstability of the
pseudo-inverse based control scheme. As compared with the
QP based scheme, the pixels errors shown in Fig. 3(f) and
Fig. 4(a) exhibit almost the same convergence time and time
duration in ROS. The joint-limit handling techniques of the
two schemes are different. In the pseudo-inverse based scheme,
the resolved joint displacement cannot coincide with its limits
due to the repulsive velocity applied by performance index
(56). In contrast, the joint displacement resolved by the QP
based scheme can coincide but never exceed its limits. For
handling joint limits, the QP based scheme outperforms the
pseudo-inverse based scheme.

V. EXPERIMENTAL VALIDATION

To verify the physical feasibility of the MWVN scheme
(9)–(12) and RNN model (26) activated by SBPAF (28), the
experimentation of the method is conducted on a physical
robotic flexible endoscope shown in Fig. 6(a). A surgical
instrument is manually operated to move along the boundary
of a liver model. Programs for the experiment are written in
C++ on a personal computer with Ubuntu and ROS installed.
The lower limit of joint displacement ϑ3 is set as 0.1 m,
while other joint limits are set as the same as those in the
simulations. Experimental results are presented in Figs. 6 and
7. Fig. 6 shows the snapshots of the robotic flexible endoscope
tracking the instrument. As seen from the snapshots, the
flexible endoscope bends to follow the instrument, enabling
the instrument to be placed at the central area of the camera
view. Transient behaviors of the pixel errors are plotted in
Fig. 7(a), showing that the errors vanish to be around 0
during the visual tracking task. The joint-displacement data
collected from the physical robot are shown in Fig. 7(b)–
(d). All the joint displacements are kept within their joint
limits. Particularly, joint displacement ϑ3 reaches but does not
violate its lower limit ϑ−3 = 0.1 m. The motions of the PSM
robot (specifically, ϑ1 and ϑ2) are constrained as illustrated in
Fig. 7(b), whereas the bending motions of the flexible joint
(i.e., ϑ5 and ϑ6) shown in Fig. 7(d) play much more active
role to finish the visual task. These results substantiate the
effectiveness of MWVN scheme (9)–(12) and SBPAF (28)
activated RNN model (26) for visual servo control of the
physically-constrained robotic flexible endoscope.

VI. CONCLUSION

For visual servoing of a dVRK based flexible endoscope,
the associated kinematic model has been established leading
to a QP based MWVN control scheme. As a QP solver,
an RNN model has been modified and accelerated to solve

the QP problem in finite time. Theoretical analysis has been
conducted with the superior convergence performance of
the accelerated RNN model proved in comparison with its
predecessor. Comparative simulations are performed show-
ing that the MWVN scheme outperforms the MVN scheme
and a classic pseudo-inverse based solution. The accelerated
RNN model is advantageous over its predecessor in terms
of the visual tracking speed. The physical feasibility of the
MWVN scheme and the accelerated RNN model has been
experimentally validated using a physical flexible endoscope.
Both simulation and experimental results have demonstrated
that the proposed method can achieve visual servo control of
the robotic flexible endoscope and consider the joint limits
simultaneously. Future work will focus on monocular and
binocular endoscopes that offer depth information by deep
learning or measurement strategies.
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